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RESEARCE MEMORANDUM
A COM.P:ARISON OF THREE THEORITICAL METHODS OF CATLCULATING
SPAN LOAD DISTRIBUTION ON SWEPT WIIKGS

By Hicholas H. Van Dorn and John DeYoung

SUMMARY

Three mothods for calculating spen lozd dilstribution, those
developed by V.M. Falkner, Wm. Mubtterperl, end J. Welssinge:, have
been applied to flve swept wings. The ongles of sweop renged from
—45° to +450, These methods wore examined to estzblish their
relative accuracy and case of application. Experimentally dotermined
loadings were used as s basis for Judging accuracy. For the
convenionce of the readers the computing forms end gll information
requislite to thelr application are included in sppendixes.

From the anelysis 1t was found that the Weissinger mothod
would be bost suited to en over—ell study of the effects of plan
form on the span loading and assoclctod choractorlstics of wings.
The method gave good, but not best, accurccy and involved by far
the loast computing effort. The Folkner method gave the best
accuracy but ot 2 considorcble exponso In computing ¢ffort and
honce appoered to be most useful for o dotailed study of a spocific
wing. The Mutterperl mothod offercd no advantages in cccurccy or
facllity over eltheor of tho other methods and hence 1s not recommended
for uso.

INTRODUCTION

In an cffort to roach higher flight specds, deslgners are
turning to widely divoreifiod types of plan forms the asrodynemic
charecteristice of which are as yet unknown. Since tho multiplicity
of such dosigns pracludos an oxporimentel Investigation of occh,
considerablc attention has bcen directod townird mocns of obiaining those
characteristics theoretically. Usually the basis for such theoretical
Investigations is span loading. While the precise span loading
itself may not be consldered of major importance, 1t is believed
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that any method giving reasonably accurate predictions of aspan
loading would be amenable to simple extonsjons which would give
reasonably accurato values of guch characteristics as lift-curve
slopc, spanwise conter of prossure positlion, downwash at arbitrary
locations, dnd rolling moments due to sidesalip or rolling.

A number of methods have boen dovelopoed for predicting the
span loading of swept wings of arbitrary tapor esnd aspect ratio,
but very fow attompts have beon mado to compare, for soveral methods,
predicted and exporimentally measured loadings on identical wings.
The lnvestlgation reported hereoin was undertaken to provide such a
comparison of prodicted and measured span loadings. The thoorotical
mothods have been evalusted In terms of relativo accuracy, mannor
and consistoncy of orror, and tedlousnoss of appllcation.

The mothods developed by V.M. Falkner (reforeonce 1), Wm. Muttorporl

(reference 2), and J. Welssinger (roference 3) have been applied to

ive wings produced by swoeping the wing panels of an alrplanc through
a rango of -45° to +45° (reoferencc 4). The span load distributions
so calculated have been compared with those obtaincd cxperimontally
at the time of the investigation of reference 4. In addition, tho
lift-curve slopes and spanwise contor-of-prossure posltion prodictod
for cach wing by the soveral methods have becn cumparod witn thosc
values obtalned oxperimentally.

Throughout the calculations a check was made of the timo
required for oach mothod and for the verlous parts of cach method.
From thoso obsorvations a comparison was-made of tho relativo
todiousness of oach method, and indications wore obtalned as to
which parts might be rendered less difficult and time consumling.

Finally, in order to enable immediate application of the methods,
all necessary tebles, computation forms, and step-by-—step ccampute—
tion instructions for each are included in the appendixes. It is
believed that with these ailds a computing staff could undertake the
computetion of swept-wing characteristics with little edditional
supervision. In addition, for the convenience of the reader, there
are included in the appendixes any mathematical derivations or
developments not lmmediztely obtalnable from the references.
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SYMBOLS
Gensral

s wing area, square feet

b effectivel wing span, feet

AR effective aspect ratio (b2/S)

) semispan (b/2), feet

c wing chord, feet

Co root chord, feet

Cav average chord (S/b), feet

A taper ratio, tip chord divided by root chord (ct/co}

A sweep angle of guarter—chord line positive for eweepback,

degrees
e gocmetric angle of atback of wing meaesured from angle for

zoro 1ift, degrees
(e geometric angle of attack of wing root section, degrees

@locel local geometric angle of attack, degrees

x longitudinal coordinste of downwash point positive
forward, feet

h'g latersgl coordilnate of downwash polnt positive to
right, feet

7 dimensionless lateral coordinate of downwash

point (r/s)

1Tn 811 instances except the umswept wing, the actual tlp chord wes
not parallel to the wind stresm. An effectlve tip chord that
was parellel was therefore agsumed such thet the wlng area
remained contstant. The effectlve spen is the span to this
effective tip.
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longitudinal coordinate of vortex element positive
forward, feot

latoral coordinate of vortex element positive to
right, feet

dimensionless lateral coordinato of vortox element (F/s)
chord at spanwlse station 1, feet

denslty of air, slugs per cubic foot

elr—satream veloclty, foot per second

alr-stream dynamic pressure (%gva), pounds per square foot
1ift, pounds

1ift coefficient (L/qS)

section 1ift cosfficient

vorticity, foet per second

clrculation, feet squared per second

spanwlse center of pressure position

differentlal pressure between upper and lower surfaces
of wing, pounds per square foot

statlc pressure, pounds per squaro foot

fros~gtream statlc pressure, pounds por squere foot
pressure coefficient{(p~py)/q]

induced vertlcal velocity or downwash, feet per second

downwash angle, the ratio of downwash to free—stirean
velocity

spenwlse position in clrcular coordinates (cos—ln
or cos™ 3F)
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Synbols Pertaining to the Fallmer Method

semispan of horsoshos vortox (s/20), fcot
dimonsionless longltudinal coordinato {x/yv)

dimonsionless longitudinal coordinate of control point
relative to vortex

longitudinal) coordinate roferred o 0.5¢ line, foot
circular longitudinal coordinate (cos™ 2x'/c)

dimensionliess lateral coordinste _ (J/Yv)

dimonsionloss latoral coordinoto of control polnt relative

to vortex
mnknowns in digtributlon series
number of vortices in chordwise directlon
designates which of M vortices in chordwise diroction

functlons used in development

circulation increment of vortex in two-dimensional flow,
feet squarcd por second

dimensionless circulation factors (¥ v, a/av;Fy ,B/BV;
I'y,c/CV) '

total circulation of vortex in btwo—dimonsional flow,
feot squared per second (Fy,a + Ty, + Ty, c)

dimenslonless lateral coordinefe of mid_.point- of
gpecific vortex (¥/s)

circulation of specific vortex in three-dimonsionsl
flow, foet squarcd. per second
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sweep anglo of leading cdge, positive for swecpback,
dogreas
Symbols Pertalning to thoe Muttorperl Mothod
dimensionloss span along tho 0.25¢ line (b/co cos A)
dimensionless semispan along the 0.25c line (b'/2)

dimensionless coordinate of control point along
line parallel to 0.25¢ line (y/co cos A)

dimensionless coordinate of vortex element along
0.250c line (§/co cos A)

perpendicular distance from 0.25¢ line to control point
divided by co

distance along 0.25c¢ line from center section to base
of perpendicular to control point divided by co

AR ~- ¥!

cosg™2 ):"/s'

2
RIS

ATEG5T

L (BT

'BR

Symbols Pertaining to the Weilssinger Method
local aspect ratio (b/c)

dimensionless circulation (I(¥)/bV) a continuous
function of ¥
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La(n,7)
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By,n;iB¥y,niB%y;
by,nsby v D%y, ns
b*vsb*v, ey ,ns
&yv;i8y ni8v, vs
t;’T(tYf;K ?

fnsu;fn:“
By

number of stations at whick gpecific circulation
is to be determired and at which downwash is
summed

number of stations at which f, ,, and IA(V,u)
is to bs detexrmined ?

denotes at which of m pointe specific circulation
ordinate occurs

denotes at wvhich of m points downwash 1s summed

denotes &t which of M points £, or Fp, or
La{v,ns ordinate occurs

denotes which of m terms in Interpolation function
fn,p

circnlar coordinate of point n {(nx/m+l = cos™ T)
circulsr coordinate of point V (Vx/m+l = cos™ q)
circular coordinate of point p (ux/M+l = cos™ 7)

dimensionlese circulation at spanwise station @p

dimensionless circulation at spanwlise etaticn
(Pn = Py

chord at spanwlse station @y

specific local aspect ratio (b/cy)

influence function

functions used in ma.th_ema.tical development

interpolation functlon used in mathematical solution

1 /arv
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DESCRIPTION OF WINGS INVESTIGATED

The flve wings to which the methods have been applied are
described In reference 4. Brilefly, they were produced by sweeping
the wing panels from an exlisting airplane to five angles of sweep.
Each wing then consisted of a center section, the two main panels,
and the two tlp sections. The alrfoil sections of the root and
tip were generated by direct extension of the surface of the panels.
The geametric characteristics of the wings ere as follows:

A x| (effggtive) S
-45.2° |0.376 2.99 335.5 £t2
—29,6° .4os L.45 282.3 f£t2

.9° 542 L W7 201.8 £t2
31.0° | ko 4.66 | 288.4 £i2

L6.4° | (418 3.45 ! 309.5 £t2

In &ll applications presented hereln 1t was assumed that all
sectlon lift—curve slopes were 0.103 per degree, the average value
of this parameter for the scctions at the ends of the unswept wing
panel. Actually, the local section slope varisd from root to tip;
howsver, because of the nature of the sections generated by
extending the wing penels, exact valucg of thisg function could not
be determined. Corrections to the theoretical methods to account
for such & varisetion were omitted from the computatlions, although
the effects of such an omission are discussed later.

The loading on a wing can be seperated into the basic loading
(that oxisting at zero over—all 1ift) which is a function of twist,
cambor, flap deflection, and plan form; and additionel loading,
vhich 1s a function of plan form and angle of attack, For purposos
of analysis in this report, attontion has boon dlrected solely
towards the additliopal loading. The wings experimentelly investigated

270 agroo with tho definition of sweep used In the theoretlcal
methods of apen loaeding prediction, sweep has becen roforred to
the swoep of the line joining the cuarter—chord polnts at root
and tip. In rcferonce 4 tho swoep was dcfinod scmewhat
differcntly.
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worc emsentially devoid of any cember or twist. Any evidence of
basic loading shown by experinont was romoved from the losding
curves used as a basls of comparison. Thus, for purposes of anslyels,
the wing was recplacod by 2 flot plate and local angles of atiack
becomo synonymous with over-all engles of atteck. The charscisi—-
istics of wings having cambor or twlst the verlation of which is
freo from discontinuitlies, howover, could be determined egually
well by any of the methods simply by using the true locel angle
of attack (as meesurcd from the angle of zero 1ift) ot each point
conglidersd. Further discussion of this problom is given in the
appondlxes.

FROCEDURES

A1l methode descrribed heroin sro exlensions of gimplified
wing theory and so arc subject to the same assumptions. .

l. The fluid is incompressgible.
2. The flow is potontlal.

3. The circulation ie such thait, after Kutte-Joukowski, the
stegnation point occurs at the trailing edge of the sirfoll,

b, The wing is represcnted by a thin vortex sheet in the chord
planc having e plan form ldenticeol o the wing plan foxm,

5. A1l vertical displecsments can be lgnored. Thle moans,
for instance, that (a) whon camber is introduced, the chordwise
angulor variatlon is considered but not the chordwise vortical
displacement; (b) whon sngle of attack is considered no vertical
chordwise displacements are considored; and (c) the trailing vortox
gheet lles always in the same horizontal plane as the wing. This
egsumption strictly limite the analysis to uncembored wings at
zero angle of attack; such linltations, however, can bo moderately
oxcecded.

In roplacing the wing by o vortex shect, the strongth of the
vorticlty » ot any point is roleted to the differcntlial pressurc
Ap ot that point by

[

Ap = pVy
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Tho problom of obtaining the loading, or dlstribution of Ap,
over the wing 1s thus rosolvod into that of obtaining the strength
of vorticity ¥ within the plan form. The control condition which
is enforcod to obtain the distribution of ¥ 1is that no flow can
occur through the vorticity sheet, or in other words, that tho
downwash produced by the vorticliy is proportional to the slope of
the sheet at any point within 1ts limits. The detormination of ¥
would be exact 1f 1ts distribution were considered contlinucus and
if the foregoing condition wero enforced at an infinite numbor of
pointe. Such an exact determination 1s Impractical; consequently,
gimplifying approximotions must be Introduced. The simplifications
generally used arc those cf (1) concentrating or restricting the
continuous vorticity chordwisc and/or spanwise in order to make
the determination of 1ts distribution amenable to mathomatical
treatment; and (2) representing the distribution of vorticlty or
of circulation by a mathematical expression, usually a serios,
containing a finlte number of unknown coefficients where an Infinito
number are genorslly required for oxactness; and (3) limiting the
number of control polnts at which the condition of no flow through
the shoet ls satlisficd. The differences in the vairious mothods
developod for predicting the distribution of vorticity arise,
therofore, from (1) the menner of concentrating or revstricting the
vorticity; (2) tho difforences in tho form of the mathometical
oxpressions used to describe tho vorticity distributions; and
(3) the choice in numbor and locatlon of tho control points and the
procise mathomatical procedure used to obiailn a solution.

The Falknor Method
The wing is firet conesidored as a-continuous sheot of

vorticity whose strongth dlstribution 1s expressed by tho double
sorics:

¥y = &ﬁ—zéiﬁn—ﬁ',/l-ﬂ2 [ cot % (20,0 + Tao,1+T2 20,2+ ++)
+ 8in @ {a1,0 + Mo, + 8z1,e...)
+ sin 26(ez,0 + Tog,1 + ?1'232,2...)
+ aes Bpyp T Mnma] (1)

in which ¥ =% end 6 = cos™? ﬁé
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Evaluation of the unknowns ap ,n 18 performed in the follow—
ing manncyr by

1. Concentrating the voriticity both chordwlise and spanwise
into a system of 8k Pinite horseshoe vortices (fig. 1(=))

2. EZxprossing the clrculaticn of these vortlces in torms
of the unknowns in equation (1) (appendix A)

3. Summing at a number of control points on the wing the
downwash produced by all the vortices of the subject
system and computed by mecns of ths Blot-Savart law

L, Equating tho downwash anglo thus determined to the slope
of the plate at those points thereby forming equations
Involving the unlmown coofficlents

5. Solving thoese equatlions simulteneously to evaluate the
coofficients eap,n

Substitution of theso valuecs in equation (1) glves the desired
oxpresgion for the load distribution.

The Mutterperl Msthod

Mutterperl considsred only spanwise distributicn of vorticilty.
In such an approach the chordwise distribution of vorticity is
concentrated into the circulation of a lifting line. (See fig. 1(b).)
The distribution of this circulation along the line is then repre-
sented by the Fourler seriles

-2}

= ll-TEVcO sin o Z azn+1r 8in (2n+l) @ (2)
n=0

The unknowns to be evalueted to obtain the distribution of T
are the coefficients &agopn+i. The downwash produced at polnts cn
the wing by the lifting line and its tralling vortex system can be
expressed in terms of these unknowne by appllcation of the Biot-Savart
lew to this equation. (See appendix B.) BEquating the expression
for downwash angle to the slopes of the mesn camber lines at these
points produces a set of equations which contain the unknowns eonia;
simultanecus solution of these equations evaluates the coefficilents,
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The Welssinger Method

From extensions of the Multhop procedures, Welssinger developed
two methods of obtalning span loading, one based on lifting surface
concepts, the otker on lifting line. The lifting surface method, however
amounted to llttle more than a substitution of the theoretical ’
additlcnal chordwise loading, represented by ¥ = constant X V cot %,
for the concentreted load of the lifting—line method. According
to Welsslnger the surface method proved to be coneidorably longer,
and gave results with an accuracy only slightly superior to those of
the line method. For this reason, only the latter is ‘described
herein.

As In the Mutterperl metheod, the continuous chordwise distri—
bution of vortlcity is concentrated into the circulation of e
1ifting line. (See figure 1l{c).) The distribution of this circula—
tlon 1s then spscifled by

m
Ej 8in uiPn sin ui@ (3)

2
G(cp)=z—ﬁ—fz )
Ri=1

n=l

The circulation TI'(¥) is represented nondimensionally as G(o)

In this expresslon and the unknowns to be evalueted are Gp, the
circulations at specliled locetione along the line. The downwash
produced at polnts wilithin the plan form by the lifting line and

ites tralling vortex system can be expressed in termsa of these
unknowns through application of the Biot-Savart law to equation (3).
(See appendix C.) ZEquating the expressions for downwash angle so
cbtalned to the slopes of the mean camber lines at these points
results In a set of equations with unknowme Gp. Simultesneous
golution of these eguations evalunates the unknowns.

EXPERTMENTAL DATA

Pressure data were teken at a tunnel speed of Q0 miles pex
hour which corresponds to a Reynoldes number of approximately
9,000,000, Data were teken over an angle-of—atteck range —3° to
9”. Plots of the chordwise distribution of pressure coefficient
P =(p-p,)/a at several spenwise stations were drawn and integrated
to obtaln the local 1ift at these stations. These values of local
1lift were then plotted agasinet angle of attack, and the resulting
local lift~curve slopes were used to obtain the curves of the spanwlse
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distribution of additionzl load and of additional 1ift coefficient
showvn herein., The maximum error in any local 1ift-curve slope as
the result of scatter, etc., 1s sstimated to be 0.00Z per degreo.
Such an error would produce a varistion of the distribution curves
of about one-half to one—third the magnitude of the discrepancy
between the theorstically computed and the experimentally obtainod
curves.

RESULTS AND DISCUSSION

Compereble spanwise distributions of the loadling coefflcient
Czbq/CLCav es calculated by the three methods and =e detoermined
from the experimental surveys are progented In figure 2. Similar
prosentations of local 1ift coefficieont 01/01_', are pressnted in
figure 3. The theoretically predicted velues of lift-curve slope
d.CL/dm and spanwlss center of pressurs poq:ition for the different
wings are piresented in table I, '

From figures 2 2nd 3 it 1s spparent that all the theorciical
methods tend to predict higher loadings at theo center and lower
loadings at the tip than wersc msasursd. In general, the Falkner
method errs less in this rsspect than do the othors. Mubterperl
distribution representations for the swept-back and unswept wings
are only slightly less accurate than those of Faelkner. On the
other hand, for the swept—forward wings the Muttorperl distribu-—
tions departed from the experimental distributions to the extent
that they must be considored unusable. Weissinger distribution
representations were equally accurate for swept~back and swopt—
forward wings. The average accuracy for this mothod was only
slightly less than that of the Fallkmor method.

In rogard tc the center of pressure position end lift—curve
slopo, the closest predictions in all instancos were those made by
the Falkner method. The Mutterperl method, in tho range in which
its applications may be considcored useble, was alec gulte accurate.
The Wolssinger method gave good center—of—pressure positions in all
ingtences and accurate values of lift—curve slopes in a.ll Instances

except :E‘or the +450 swept w:mg. e V2% @rcet  Arewm A americs

"!\u"* [NER g
The time studies of tho calculatlions indicate that the Falkner
method tekes from 24 to 32 hours. The grenter part of this time,
16 to 20 hours, is consumed in determining the valucs of the down—
wash factor F for the difforent vortices. The major part of the
ramainder is needed for the solution of the simulianccus equetions,
which often prove to be 11l conditioned. Tho Mutterporl method
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takes f£rom 20 to 28 hours, the greater part of the time belng
constmed in the Simpscn rule integratiom of the factors Xg' to Fa'f.
The Welgsinger metinod using m = M = 7, takes only 2% to 3 hours,
in which there is no phase. that consumes an outstanding amount Of
time. A - S
FroanTts 0 S8l T IR an

It has been stated previocusly that the section lift-curve
slope ¢}, of all sections on all five wings was assuned ts- be
0.1030 per degree. The thickness variations from root to tlp,
however, indicate that variations in c¢3, probably exist for each
wing. TUnfortunately, the distortioms of the sections resulting
from the manner in which the wings were constructed preclude an
exactdetermination of what the variation might be for all but the
ungwept wing. TFor this reason, the readily applicable correction
to theory (see appendixes) for a variation in Clg Wwas not
included in the computations. While this correction would
account at least in part for the aforementioned discrepancles
between theoretical and experimental loading distributions, 1t
should not alter the relative evaluation of the three methods.

In considering the three methods it should be noted thet two
of them, those of Welssinger and Mutterperl, have ldentical aero-
dynamic approaches and differ. only in the mathematical procedure.
It would be expected, therefore, if no compromise were made In the
mathematical accurecy (i.e., if a large number cf terms were used
in the series)., idsntical results would be obtained. Further, if
similar limitetions were impressed upon the two methods it might
well be assumed that results of comparabio accuracy would be
obtained.. The failure of the Mutterperl method to predict
acceptable loadings on ths swept~forward wings is inexplicable on
these grounds and, as & result, must be attributed to an inconslist-
ency introduced in the mathematicel development. An additional
advantage of the Weissinger method is that 1t lends itself to the
pretabulation of a number of comnstants which are applicable to the
solution for any plan form. It is because of this that ths Welssinger
method proved less time consuming than that of Muttorperl which
cennot be handled in this manner. In general, then, 1t is apparent
that the Welssinger method offers several advantsges over the
Mutterperl method, which, however, stem entirely from the mathematlcel
phase of the solution. Insofar as the asrodynamic concepts are
concerned neither method should be expected to be suporior.
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The Falkncr msthod offers a definite aerodynamic advantage in
that tho wing 1s represented by a lifting surface rather than a
l1ifting line. From a corngidoration of only the spanwise distribu~
tion of loading, the time rcqulred to use the Falkner method appears
agxcesslive when the very minor impirovement in accuracy is recognized.
However, if surface loading or chordwise loading were desirsd, the
method would undoubtedly show marked supericrity. The relatively
long period of time required to cbtain a solution by this method
is in grest measure a result of the largs numbsr of purely mechanical
functions inherent in the method. It can be expected that such
processes are amsngble to handilng by mechanicel means if gufficlent
use ls to be made of the method to warrant their construction. One
such aid of relatively simple form has been applied in other span—
loading computations using the Fallkner method and resulted in cutting
the computing time by 30 percent with no sericus losa 1n accuracy. It
consigted of constructing a large-scale contour chart of the down-
wash field around s horseshoe vortex and using this In conjunction
with an appropriately scalod drawing of the wing to read direcily
the downwash at the various control points.

A further sdvantage of the Fallner method over the liftiné——line
methods can be seen In the Increased flexibility resulting from the
system of finite vorticos which permit application of this method to
a variety of plen forms beyond the scope of the other methods the
1lifting line patbtern and control—-point poslitions of which are
fairly rigidly specified. In this regard, Falkner has successfully
applied the method to a pterodactyl wing (reference 5) end to a
wing with a parabolic 0.25¢c line (refersnce 6). It should be
remembered, however, that should ths plan form be of such a nature
as to requlre a modification of the vortex lattice, the work
involved will be considerably increased.

CONCILUSIONS

From the results of the subject investigation the following
conclusiona have been drawn:

1. Whers an over-all study of the effucts of sweep and pian
form on spen loading, lift—eurve slope, etc., is desired and
whore good accuracy is desired for minimum effort, the Welssinger
method is most useful.
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2. Where a detailed study of a specific wing ls desired and
utmost accuracy is Important even at the oxponse of conslderable
computing effort, the Fallmer method should be usod.

3. The Muttorperl method offered no advanteges over the othor
mothods either in terms of accuracy or La.cill_ity and hence 18 not
recomuendod for usoe.

Amos Aeronauticael Laboratory,
Naticnal Advisory Cormittee for Aeronautics,
Moffett Field, Callf,

Nicholas H. Van Dorn,
Mechanical Engineor.

(gt 4-»-:4. A (",, /4//77

__~"John De Young, -
Physiclat.

Approved:

1
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‘
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,a[/(’*‘*' John F. Parsons,
Asronantical Enginecr,
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TABLE I.— COMPARISON OF THEORETICAL AND EXPERIMENTAL VALUES
OF LIFT-CURVE SLOPE AMD SPANWISE CENTER (F FRESSURE

Wing paremeters Lift—curve slope dor/de (deg ™)
A | AR ! A ! Falkner| Mutterperl | Weissinger) Experiment
5.2 j2.99 ! 0.3761 0.0k19 0.0koo5 | 0.0450 0.0k22
-29.6 |45y k05| L0573 OB5607F L0385 .0580
.o [bbT! .sk2| L0633 | 063 |  .06h0-|  .0660
3L.0 [k.66! .hhz; .0638+ 0615 .063L . 0668
¥6.4 [3.451 418] 05091 .05 LSOO 4. 0538 1357,
Wing varsmeters Spanwise center of pressurs, Tep j eryer
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APPENDIX A.— PERTINENT TNFORMATTION AND COMPUTING PROCEDURES
FOR USE WITH THE FATEWER METHOD

Solection of the Vortex Pettern

The relative strongth of the circulation of the vortices in e
network, as expressed in terms of the uninmowns in the aories
equation (1), depends upon ths vortex pattern end tho torms in the
gerieas only, not upon wing shspe. Tables of such circulations
can be set up for use with eny spocified paticrn. Fslkner, on the
basis of his applicatlions, selocted the pattern of 84 vortices
shown in figure 1(a) as suiteble for most wings. While 1t isa
recognized that other patterms might produce more accuratec results
in pertliculer instences, the advantages cf this regular pattern
in reducing thoe computational work aro great and hence it was
uged for all applications Included hercin.

Limlitations of the Serles

The nuinber of tsrma in oquaticn (1)} required to obtain a good
approximation of the load distribubtion deponds on the raopidity with
vhich the sorics convoerges for cach application. For the calculation
of symmotricel loading, Falkmor concludod thet a minimm of throe
chordwiee and throe spamnwiso torma (ninc unknowns) should be usod
for all swept wings, while a minimum of two spenwise and threc chord—
wise torms (six unknowns) should be used for stralght wings.

It should be rccognized that, as it is given, this seriocs
will not converge when attempting to approximate a surfaco loading
whore discontinuities exist suck as thoso reswlting from portial
span fleps. A slight modification to the scries, howovor, will
enable it to gpproximate the loading whoro such a discontinulty
occurs. Fallmer hag dotormined tho nocossary modification in his
Investigetion of wings with flops end silercons defloctosd. (Soce
reforonco T.)

Dotormination of Circulation of Noetwork Vorticces

Once the vortex pattorn and number of texms in the basic
serios have been ostoblishod, the clyculoatlon of the vortices as
expressed In torms of the unknowns in equation (1) can be determined
by replecing tho continuous vorticity chordwise and spanwise of
equation (1) wlth the concontrated steppod loading of the lattice.
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The chordwise concentration of the loasd is determined by the
condition that, at points located midway between the loeds (at
one—quarter, one-half, asnd three—quarter chord), the downwesh
produced by the four chordwiss loads I'yv be the same as would be
produced by the conbtinuous chordwise losding in two~dimensional
flow, and the limitation that the sum of the isolated loads be
equal to the lntegral of the continucus loed.

When only the first term in the chordwise series of equa.tion
(1) is considered,

O

7=M'_§m/l—ﬁ§ 2—0 ﬁ-nao’n cob (A1)
n=

D

or, since only chordwlse loeding 1s being concidereld, sll factors
which are not a function of the chordwise variable 6 can be put
into & constant A where

[+
A = 8s tan a/172 > A ag,n (a2)

[

then n=0
= %&: cot % (A3)

Then it can be shown that if the flow l& consildered two dimensionsal
the downwash angle at any point along the chord ise

L
2

o

¥ -
¥

and.

N
~
&
n
B
Q
g
no

,_coseae=1l’=%‘1 (Ak)
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The following four oguations may thereforc be obtained:

rl,A + rz,A + PS,A + Ty LA = § VA (a) :
6Fy,r. — 80,4 “%IIS,A —%'4,44. =x VA (b) ;

\ 45)
grl’é' +8I'2’A—8I'3,A %I‘ = n VA (c) i (I5
§r 8 & 8 = (d)J
5T1,A + '3'1'2,11. +Tg,n =S, 8 ==nVA

vhere equation (a) equates the integral of the continuous loading
to the sum of the clrculaticnz of the separate loads, and equations
{b), (c), and (d) equate the downwash at the three pivotal points
as produced by the continuous loading to that produced by the four
loads of I'yv. A simultaneous solution of these equations glves the
increments of circulation of the four chordwlse vortices which are
equivalont to the continuous leadling represented by term 1 of
equaetion (1).

A similer solution when
7= sine (86)
where
[++]
= 8s 'bana, 172 Z 814n {(o7)
n=
gives the clrculation—increment distribution which ie cguivalent

to the continuous lozding oxpressed by the asecond choxdwlse term
of equation (1), and so forth.
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The circulation®of a specific vortex may then be expressed by

or if
PV,A = AV’TGV,A-' Pv,B = B‘VﬁG'v,B, rv’c = CVTEGV,C

The substitution into this eguation of the values of A, B, etc.,

introduces the spanwise variable 1.

Py, = BnsV tan o Jf1-9~ [Gv,A (ao,o + 7 ap,1 + e 80,2...)
+Gv,p (21,0 + Ta1,1 + T 2a1,2 + ...)

+ C"V,C (a'a,o +.ﬁ 5'2,1 +ﬁ2 8"2,2 + .c-)

+ ...] (410)

Since the circulation of specific horseshoe vortices is now
being considered, the circulation no longer varies continucusly
along the span but remains constant throughout the length of the
bounded lines. This is equivalent to the assumption that the
continuous loading is stepped at intervals egual to the length
of the bounded lines of the network vertices. The continuocus
varisble 7 of equation (1) or equation (A10) is thersfore replaced
in a new equation by epecific values p of 7 which indicate the
midpoints of these lines. This new equation which expresses the
circulation of any network vortex is then

e'.'E’he velues of Gy,p Gv,p and Gy,C presented by Felkner in
reference 1 were found to be in error. Under the direction
of Mr. Arthur Jones these valuos were recomputed at Ames,
and the values so obtained are presented in table Al.
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- Sz
Ty,u = 8rsV tan o4/ 1-y [Gv,A (ag,o * K 8y, *H2 B, + eoe)
2
+ Gy p (&l,o tHay , tHRa o+ eve)
2
+ Gy o (aa,o +pra, . +H2a, ,+ ces)

F oees ] (a11)
or for a symmstrically loaded wing

Fy,u = 8nsV tan a1 [Gy,a (ag,0 + 12 dg,p + U* 80,4 + +00)

2 <
+ Gy B (al,o +pfea, L rua) ces)

2 L3
-+ G‘V’c (&2’0 + K 8.2’2 + i 5-2’4_ + olo)

+ eeel . _ (a12)

Examination of this equation will show that, as has previously been
indicated, the known parts of the equation u, Gy a, Gv,B, etc.,

are independent of wing shape. The products of tﬁsse factors

w102 Gv,A, WR/IT2 Gy,B, etc., have been tabulated for use in

any application in which the Sl—vortex pattern is used. (Ses table AII.)

Sslection of Control Points

Since one equation is formed at each roint and since there
should be the sams number of equations as there are unknowns, the
total number of points selected is determined by the total number of
unknowne retained in the series equation. Further, the spanwise and
chordwise distribution of control points must correspond to the
number of spanwlse and chordwise terms reteined in ths series. The
locations of the points chordwise and spanwise are limited to posi~
tions midway between or on the center line of the vortices. Aslde
from these limitstlons, the exact choice of location remains s matber
of experience. Falkner found that for a calculation of symmstrical
loading the arrangement presented in figure l(a) resulted in good
accuracy for wings with sweep. Thie arrangement has bsen used in
all the calculations presented hersin.
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Determination of the Downwasgh

The downwash produced by a simple horseshos vortex of circula—
tion I is expressed by (reference 8)

7 - mri;;‘r 7 (413)
whers
P oo T «f(x*)2_+ (y*+1)2 r’*—J}x*)z_+ (y%-1)2 (ALk)
x* (y*+l) x*(y*-1)

The downwash produced by a network vortex is then from equations (All) »
(A-l3).s and (All['):

-;I_= 40 tan o Nf1-p2 [Gv,A (20,0 + K 80,1 ++s)
+ Gy p (5'1,0 +Hay g+ ces)

+ e ] F (415)
or for a symmetrical wing

¥ =40 tan a1 [Cy y (ag o + B2 85 o + out)

<}

+Gy,B (81,0 + L2 81,2 + «e0)
2
+Gv,c (8.2,0"'“. 8.2,2"‘ -oc)
... ] T (A16)
The coordinates x¥*, y*, and consequently the factor F can be
determined readily from wing gecmetry. In this regard, plots of the

function F wversus x* from O to 20 have bezen prepared at valuss
of y* =0, 2, k, 6 ... 4O; however because of their size those
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charts as such have not been included in the report, but the tabular

data necessary for their construction are given in table AIII. In

addition, exsmination of (Alh) will reveal that if y* is constant
F (—x*) = F1 + F2.— F (x*) (a17)

where Fi + Fz2 1s a function of y* only

2 2
7 Fo = v e A18
1+ 2 yE+L -1 ( )

For this reason table AIII contains only positive values of x*,
and the function F; + Fz 1is presented in table AIV.

Summation of the downwash at any control point now results in
an expression containing the unknowns &, , and their numsrical
coafficients which are products of the tabulated velues ptt 12,

Gy.as Gy and F. In this regard it should be noted that in
thd" Bummd 1ons gor a symmetrical (about root chord) wing, the down-

wash factors F ror symmetrically located vortices may be added
together prior to the multiplication of these factora by the circula—
tions of the vortices, since in this instance ths circulation of suech
a pair of vortices will be identical.

‘Solution for Additional Losding

To obtain the additionel loeding, the wing is consldersd = flat
plate the slope at which any point is ten o = %, Substitution of
" this valus into the downwash expressions, as evaluated at the
gseveral control points, results in e set of equations with unknowns
fm.ne Simultensous solution of these equations evaluates the -
owns which can then be’ introduced into sgquation (1) to produce
the desired expression for-sdditional loading. :

The following expressions can now be derived readily from
equation (1):

aC;, 4R %

do 16

(1620 ,o+88-1,o+1¥5-o:2+25- 1_',2"'2&0,4'*‘&1,4) (a19)

cy _ (1) 16 JATF [2ag otay ot (B8, 048, ) +T% (28, 448, 4 )]

Cr  w [1-(1M7 1 (36ag,4B3e,,He +Ea TN

{220)
1.0 022 Qs 1:4)
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ci cn _ 32419 [2&0.o+&1.o+'ﬁ2(2&o.2"'&1.2)-*#(25—0#&1,& (a21)
CL cav n’(1530,0'*'8&\-1,o+’+\‘30,2"'231_,2"'23<3,4"‘9‘J_,4.)

o = 32 [35(2a0,0%81 ,0) +1l (280, ote1 , ») +8(Bag 4 +ay 4 )] (a22)
°p 105n(l6a0’0+8a1’0+ha0’2+ 2&1,2+220,4+a1,4)

into which the cosfficlents &m,ns must be substituted to obtain
the quantities lIndicated.

Solution for Basic Loading

The determination of the baslc loading on a wing with camber
end twiet can be accomplished in several ways. The simplest of these
is to calculate tho total loading, basic plus additionel, at some
finlte 1ift coefficient and then to subtract from this the additional
loading as calculated for that 1ift coefficient. A solution for the
total loading on a cambered and twisted wing is ldenticzal with that
of a flat~plate wing up to the formation of the simultanccus equations.
For the flat-plate wing all local geometric angles of atback were
identical to the wing goometric cngle of attack; in thie inetcnce
local geometrical angles of attack are in addition a funcitlon of
the camber and twist.

If the midwing section of the wing is choson as a reference ond
seot arbitrarily at some angle o, then the loczl geometrical
angles of atback at the various control points are known exoctly;
kowever, the anglo o of the reference from the zoro 1ift engle of
the wing is not known. To cbtain a solution undor these circumstonces
the values tan ®iocgl 8nd ton ag ere substituted for w/V ond
ten o, respectively, in the downwash expressions, oand o solutlon far
the coofficlents ap,yn 1s obtalned in which, however, theso cooffl-
cients will be In error by the factor tan «ftan ag. If those coeffi~
cients and tho factor +tan o are thon introduced irnto tho expression
for 1ift coefficlent.

2
Cp = ﬂ—léB' tan a(16ao,0t82y gtta o, #28 1 #20, 440y ,) (423)

the 1ift coofficiont for the angle of asttack o will bu obtained,
since tho error introduced by using og will bo negotod by tho orror
in the coofflicients eam,n. In other words, the rosult is the somoe

as 1f the correct valuos of  ap,n end ten @ hod boen insorted into
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equation (A23). Similarly introduction of tan ag and the incorrect
values of &m,n into ths following:

cy0p = Lrs tan a4/ 1-2 [2a, ,ot8y, 04ﬁ2(2a ey 2)+114(2a.o 4+a1,4)]

(a2k)
wlll result in the values of the ordinates of the total loading
curve for tan o« Now if a solution is effected for the additional
loading, as previously described, and the valus of the lift-curve slope
dCr,/do.  thus obteined from equation (A19) is divided into the valie
of Cf obtained from equation (A23), the correct value of the wing
angle of attack ftan « will result. If this value end the coeffi-
olents am,n of the additional loading are then substltuted into
expression (A24), the ordinates of the addltional losding curve will
be obtained. Subtraction of these from the ordinates of the total
loading curve will result in the ordinates of the desired basic
loading curve. '

Correction for Section Lift-Curve Slope

Through ths general dsvelopment of the method all section lift—
curve slopes were assumsd to be the theoretical 2x per radians
(0.1096 per deg). As this assumption is not valid for all sectioms
the final expression for vorticity will be in error unless & corrac—
tion is gpplied. If the section lift—curve slope 1ls the same at g1l
sectlions of the wing, the error may be corrected by simply multiply—
ing each coefficient &, by the ratlio of actual section 1ift-—
curve slops to theoretical section lift—curve slope. A varying
section lift—curve slope can be accommodated aimost as easily;
however, in this instance the correction must be Introduced into
equation (1} as a function of the spanwise variable M

Canmputing Instructions

The following instructions apply to unyawed straight tapered
swept wings without camber or twist.

The coordinstes x*' and y*' velabting all vortices and
control points to the cenbter section leeding edge of the wing are
calculated on form A{(1l) using ths relations
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yet =20 p

x*t = 20 fulten & Ti%.l)lﬁ [1— (2-2) u]] (a25)
for the vortices, snd

y*t =207

x*! = 20 |%| ten A — Tig%iﬁ [1 - (32 7] (A26)

for the control points. Since the wing is symmetrical x*' will be
the sams for similarly locatsd vortices on each wing half, and the
values of y*' for the left wing will be the sams as thoss for the
right wing, although of opposite sign. For this reason these values
only need be computed for positlve valuss of % or H.

The valnes of x*%* and y* relating a control point to each of
the vortices are obtained by subtracting the values of x*' and
g*' of the vortices from those of the control peint, column 9 or 3,
form A(1l) from a value in colum 18 or 12, form A(l), respectively;
x* and y* =are then tabulated on a form A(2), using & separate
farm for each control point. It should be notod thet since the
coordingtes of the vortices at p = 0.9625 are based upon a unit
length y, one—quarter normal size, x* and g% for these
vorticas are four times the normelly calculated values. Lastly, by
virtue of symmetry of plan form, the coordinates can be tabulated
so that two velues yp* and yp¥*¥ exist for every valuo of x¥*.

These coordinates are now used to enter cherts of the downwash
function F as prepered from the values in teblo AITII. The values
obtained for the vortices at W = 0.9625 should bo multiplied by
four. Beceuse of symmetry of loading, Fyp and ¥Fp can be and ars
addoed togother. T oo ool o o

The simultansous oquations set up in tabular form in form A(3)
ers now obtained as follows: Considering the first squation or

column 1, the second number, the numbrical coefficlent of 20,0,
1s obtainzd by multiplying %he velues of Fp + Fr 1in colum T,

forn A(2) as determinsd for control point 1 by the values listed
under ag o in table AIL and summing the products. Similerly,
the third number in column 1, the numorical coefficisnt of 81,0:
is obtained by multiplying the values in column 7 by the values
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listed under 23,0 in table AIT and surming the product. The process
is repestsd using the values listed under 25,50 80,23 etc., until
the entire eguation is cbtained.

The second eguation, column 2, form A(3), is set up in the same
manner except that the values in form A(2) as determined for a
second control point are used. The procedure is then repectsd until
the nine required equations ars formsd.

The constent numbers, row 1 of Form A(3), esre obtained as
follows: Ths downwash at control volnt 1 is

% = 40 tan o X colum 1, form A(3) "
or
AR
or,; (Eﬁ) = column 1, form A(3)
Equating % to the slope of the plate, tan a,

.1% = 0.0250 = column 1, form A(3)

In like mannsr the constaents for the other squations are also 0.0250.

The equationg are set up ln thils manner to facilitate their
solution by the msthod outlined in reference 9. Of the verious
methods for solving & large number of simultansous equations which
were tried, the method of referencs 9 was found to be most rapid and
straightforward whore only stendard computing machlnss were available.
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TABLE ATI.~ CEORDWISE FACTORS
PATTERN UTILIZING FOUR CHCRDWISE VORTICES

FOR VORTEX

v Gy A Gy,B Gv,c
0.125 0.27337 C.049C2 0.€7282
<375 .11680 . 07598 03823
625 . 06947 07598 -.03823
875 .04036 .04902 _=.07282

30
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TABLE AII.- PRODUCT OF CHORDWISE AKD SFANWISE FACTORS FOR am,n TO BB
USED WITH THE 84~-VORTEX PATTERW SYMMETRIOAL LOADIRG
NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

éﬁ 1t .I-u! w2 rss‘.é-u5 :’.ﬁ-u’ R fet i AT
¥, A »B

XGv,B IXGyec |[xGv,a (X Gv,c T T X 8y,¢

v [ for for for for for for for for

25,0 &0 23,0 20,2 2,2 3.2 85,4 1,4 2.4

0,126 0 0.27337 0.04902 0.07282 0 o] 0 0 >} 0
ol 227200 o OAB7T «07248. 1 .0027% 00048 « 00072 « 00003 Q «00001

2 226785 «04803 +07T135 | .0l072 «00182 «002886 «00044 «00008 «00012
3 26077 + 04676 «0884T | 02348 | 00421 «00628 «+00210 «00038 « 00068
ok «26064 « 01453 «06674 | +04008 « 00719 «01088 « 00642 «0011% «0017L
b «23674 «04245 | 06308 | 06918 «0lo8l «015677 01478 «00258 «00394
] +21870 203822 «05826 | .07873 «01412 «02087 «02835 «00508 « 00766
o7 16621 «03B0L «05200 | 09665 «01715 « 02548 «04888 +00841 «01249
8 16402 20294) «04369 | -10497 «0l882 «02796 +06719 «01205 +01780
o9 -11916 « 02137 «03174 | .09653 «01731 +0257L «07818 «01402 «02083
«9625 «07417 +01330 «01978 | .08870 «01232 «018350 «06TE4 01141 «01895
«376 0 «11€80 «07598 «0382% 0 o 0 0 0
ol 11622 «07T560 «03804 | 00216 «00075 «00038 « 00001 «0000% 0
o2 oll444 « 07445 «O3748 1 00468 +00298 «00160 «00019 »00012 «00006
3 11142 «07248 +03647 | .01003 «00663 «00328 +C0080 «00069 «000286
ot «10708 «06984 <03504 | 01712 01114 « 00560 «00274 «00179 «00080
oE +10115 208580 «03311 § 02529 «01645 «00828 « 00632 «00411 «00207
o6 « 09544 +06078 «05058 | 03364 02188 «01101 «0]1211 «00788 « 00586
o7 «08341 «0B426 «02730 | 04087 «02669 «01338 « 02003 « 01303 «00586
«8 « 07008 «04569 «02284 | 04486 02918 «0l468 «02871 «01888 +00540

13 +080081 +03312 «01868 | 04124 «02685 «01350 «05340 «02173 «01083

« 9626 +0316% «02061 «01037 | 02554 +01509 «00961 «027089 «01769 «00890
«625 4] «06547 «07698 § «.05823 o] 0 o [+) [+] [+]
01 206912 «07560 = 03804 +000€E9 «00076 =s 00038 « 00001 - 00001 s}

2 «06607 «07445 | -.03748 } 00272 «00288 } =4+00150 «0001X 200012 | =.00008
3 «068827 «07248 | =.05647 | »00597 «00663 | -.00328 « 00063 +00068 | =.00029
od «06367 «06964 | -.03504 §} .01018 «0l114 I =,00580 «00163 «00179 | =+00020
.5 006016 06580 -e 03311 00150‘ «01645 = 00R28 «00376 «00411 ~-« 00207
o6 +05568 «+06078 | «.03068 | 02001 +02188 | ~,01201 «00720 «00788 | =-.003588
o7 04861 «06426 | =o02730 | 02431 «02659 { =.01338 «01281 «01305 | =.00658
«8 «04168 «04669 | =.02254 ] .02668 «02918 | =.01468 +01l708 +01868 } =,00940
%) «03028 03312 | =.01666 | 402453 +02683 | =-.01380 201587 «02173 | ~.01085
.9525 ¢01885 -02061 -001037 «01748 .01909 -¢00961 «01617 . 01769 -+00890
.875 O -04036 a04902 -.07282 ) 0 0 1) 0 0
.1 .04018 « 04877 ".072‘6 « 00040 « 00044 - 00072 [s] 0 =e 00001
2 +03984 « 04803 -e 07138 .00158 .00192 =o 00286 « 00008 « 00008 =g oool2
3 «03850 +04678 | =~<O06B4T | 00347 «00421 | =.00628 «00031 «00038 | =«00066

X3 «03699 204493 - 06674 «00582 «00719 --01068 « 00086 «00115 =e 00171
5 «03495 «04245 | «.06306 | 00874 «01061 | =,01877 «00218 «00266 | -.00394
«8 .05229 .08922 - 05826 -01162 001412 - 02067 00419 «00508 =+ 00755
o7 «02882 +03501 | =,05200 ] .0l412 #01715 } =.02548 «00892 «00841 | =.01249
o8 «02422 02841 | ~-.04368 | 01650 «01882 4 =,02758 «00992 «01205 | -.01780

-] « 01769 «02137 | «,03174 1 01425 201781 ] =, 02571 «0115¢ «01402 | ~.02083
«9625 «01085 «O1330 | =,01l976 { 01014 «01232 | -,01830 «00840 +0114F | ~01655




TABLE AITT.— DOWNWASH FACTOR F IN THE FIELD OF A HORSESHOE VORTEX
[At positive

valucs of x* only]

o F o+ (2/x) F
yr=0 | y* =2 y¥=U 6 8 10 12 14 16 18 20
0[2.00000 |-.66667|-.13333 | —,0571hk |~,03175 | ~.02020 |-,01399 | ~,01025 |-.00785 |-.00619 [-—.00502
.1{1,90020 |—.62234 —,12976 | ~.05616 |{-,03135 | —.01999 {-.01387 | —.01.018 |~.00780 |~.00616 [-.00499
.2{1.80200 |~.57875| ~.12625 | ~,05519 |-.03093 | -.01980 |-.01375 | ~.010L1 |~.007Tk |~.00612 |—.00497
3L T068T | ~.53652| ~. 12271 | —,05421 |~.03053 | —.01959 !-.0136k | —~.01003 |~.00770 [-.00609 (~.00493
JHL.61088 |- h9621) —.11920 | ~,05326 |~.0301L | ~.01938 |--.01352 | —.00996 |~.00765 |-.00605 |~.00491
5{1.,52788 | —.45819) -.11573 | ~.05226 |~,02973 | ~.01919 |~.013L40 | —~.00988 |—,00760 |~.00602 |—,00489
6]1.40603 | —.42269) ~,11228 | --,05130 |-.02934 | —,01897 |-.01329 | ~.0098L |~.00755 {~.00599 |—.00486
J711.36954 |—.38981| —~.10889 | —~.0503% |~.02893 | ~,01.878 |~,01317 | ~.009Th |—~.00750 |~.00595 |-,0048k
Bl1.2084h -{-~.35957] ~.10555 | ~.04938 |--,02854 | ~,01857 |~.01305 | ~.00967 |~,00745 1~,00592 |~-.00481
.9|1.23254 {-.33186) ~.10227 | ~,04843 |~,0281%4 | -—.01838 |~.01293 | ~.00959 |~,00740 |~.00589 |-.00478
1.0{1,17158 {~.30655 —.09904 | —.04750 |—.0277h | —.01817 |~.01282 | —,00952 |~—,00736 i~.0058% |—,00476
1.5 .92963 |{—.22017| —.08400 | ~,04292 |~,02581 | ~,01718 |~.0122% | ~,00915 |~,0071L {~.00568 [~.00h6N
2.0 .76393 |~.14956| -.07093 | —.03863 |—.0239%4 | —,01620 |~.0L167 | —.00880 |—.00686 |—.00551 |~.O00L5L
2.5| 6459k |-.11032[~,05986 | ~,03468 |-,02214 | —,01526 |—~.01112 | —.0084} |-.00663 |-.0053% |~.00439
3.0 .55849 |~.08398~,05066 | ~,03107 |~-.02045 | ~,01435 |~.01057 | ~.00810 |-.00639 {-.005L7 |—.00427
i 43845 [~.05255| —.03683 | —.02492 | —,01739 | —.0126k4 |—.00953 { —.00T43 |~.00593 |~.00%85 |-.00403
6| .3057h |~.02555|~.02100 | —.01632 |-,01255 | —.0097% |~.00770 | ~.00620 |~.00508 '—,00423 |~.00357
8/ 2344k |--.01489 —,01318 | —.01112 |~.00918 | —~.00752 |~.00620 | ~,00515 | ~.00433 |~,003G67 {~.0031k
10| .19012 |~,00969}-.00893 | ~,0079L |-—,00685 | ~,00587 |—-.00500 | ~.00428 |-,0036¢ |[-.00318 {--.00277
15| ,12889 |—.00438|~.00422 | ~.00397 |~.00368 | —,00335 {—.00305 |~.00274 | —,00247 '-,00223 |-,00200
20| 09750 |-.00248| —.00243 | ~,00234 |-.00223 | ~,00211 |~.00199 |—.00185 |~.00L7L |-.00157 |—.00148
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TABLE AIII.~ Concluded.
F
x* [
y* 22 24 26 28 30 32 34 36 38 40

0| =~e00413 | =a00348| =e00296 | ~e 00256 | =o00222 | ~. 00196 | ~+001L73 | = 00154 | ~+00139 | -.00125
ol | =, 00412 | ~400346) «a00295 | -.002556] =.00221 } «.00195{ ~. 00172 | ~s 00154 | ~,00139 | ~400125
02 | =e00410 |~ 00345| ~.00294 | =.00254 | =.00220| =4 00195 | ~+00172 | ~.00154| -=.00138 | ~.00124
o3 | »e00409 | =-e00343| ~400293 | ~+00253 | ~+00219 | ~+00194 | ~sO0L7L | =4 00153 | =~.00L38 | -.00124
«d | =e00407 | ~e00342] ~40029)1 | ~a 00252 | =400218{ «a00L93 | «400L71 | =4 00153 | ~400L37 | ~.00123
o5 | 200405 | ~e00340] -400290{ ~2 00251 | -4 00218 =400192 | =+ 00170 | =400152 | =+ 00L37 | ~a 00123
06 ".00405 "'00338 "'000289 --00250 —.00217 e 00192 "000170 "'000152 --00137 "'500123
o7 | =« 0040) | ~400337| -.00288| ~,00249| ~.00217| ~,00191} ~.00170{ -,00151{ ~,00136| -.00122
o8] ~e00400 | -s 00336 -.00287 | ~.00248} ~,00216| -.00L90| ~,00169 | =,0015)} =~.00L36 | -.00122
«9Q | =~«00398 | =4 00334 =400286 | ~+00247| ~+00215] ~a 00190} ~400168 | -. 00050} =400136 | -.00122
140 | ~400396 | ~e00333| =+00R85| =+00246| =+00215( ~.00190}| -+ 00168 | =+ 00150| ~400135 | =+ 00122
1o | =200387 | -o00325| ~,00279| ~.00242| ~+0021) { ~,00186| ~.00166 | ~,00148| -.00134 | ~.00120
20| ~e00377 | =s00318| ~a00273 | ~+00237| =o00208| ~s00183 | =+ 00163 | =4 00146 | ~.00132 | ~o00L18
2.5 —.00368 "'000311 -.00268 "'000233 "‘l00204 "'000180 "".00161 -.00144 e 00130 "000117
3e0 | = 00368 | »e 00304} =~.00263 | =,00228] -»00200| ~»00177| ~+00158 | =+ 00142 | ~+00128 | ~.00115
4 | »,00339 | =+ 00291 -.00251| =+00219| =.00193 | =.00L72 | ~s00153 | ~.00L37| =.00124 | -.00113
6 | ».00305 | ~+00263] =~+00230| =¢0020L| ~+00L79| ~s00L60| ~os00143 | -, 00129 | =+ 00LL7 | =4 00106
8 "000275 --00237 had 00209 -~ 00186 ~e 00165 s 0014:8 ~e 00133 "'000121 ~e 00110 ~e 00101
10| =s00242 | ~e00214| ~400L90| =400L70| =400152 | ~o00L37 | =4+ 00124 | =2 00113 | =400103 | —¢00095
16 | =,00180 | ~+0Q0L64]| «400L48 | ~400L34| ~.00123 | ~o 00113 | =4 00103 | ~a00095| =, 00088 | —« 00081
20| =+00L35 | =a00125| ~e00116| =~ 00106 ~+00099| =« 00092 | ~o0CO86 | 400079 | = 00074 | ~«0006Y

TEOLY 'ON WM VOYNM
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TABLE AIV,- AUXILIARY FUNCTICN F, 4+ F, FOR DETERMINING
DOWNWASH FUNCTION F AT NEGATIVE VALUES OF x*

[Fax} = P, 4 F ~ Flax*)] .

y* F, + F, y* Fy+ Fp
9] 4,0C00 24 -0,CO70C
2 ~1.3333 26 -.0059
4 -.2687 28 -.0051
6 ~e1143 30 -y 0044
8 -+ 0635 32 -4 003G
10 -e 0404 34 -¢ 0035
12 -.0280 13 -e 02381
14 -, 0205 37 -. 00292
16 -e 0157 61 -2 00108
18 -. 0124 93 - 5004 6
20 -.0100 117 - CO02 9
a2 -+0083 141 -« 0C020
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APPENDIX B.— PERTINENT INFORMATION AND COMPUTING
PROCEDURES FCR USE WITH THE MUTTERFERL METHOD

A lifting line used to represent a wing is placed in o posi-—
tlon corresponding to the gquartor-chord lins of ths wing. The
distribution of circulation along the lifting line is axpressed by
equation (2}.

No generalization can bs mede as to the number of terms which
nust be retainsd in the series to ensure acceptsble sccuracy.
Mutterperl impliee thal four are sufficient and utilizes thls number
in all spplicatioms. It should be noted that all losdlngs predicted
by the series as it stands will be symmotricel. In addition,
equation (2) cannot satiefactorily approximate a curve containing
discontinuities such zoa would be produced by flaps or ailerons.
Mutterperl made no comment as to additions or alterztions to the
series which would enable circumvention of these limitations. As
a result, whils 1%t is belisved that such modifications could be
included, 1t is not known to what extent they would increase the
complexity of the mathematical evalustion.

Since 1t can be shown that in & theoretical approsch using a
lifting line at the quarter—chord line, the downwash angle at the
threc—guarter—chord lins moest closgly approximetes the trus angle
of attack of the wing, the control points wers placed along this
line. The number of points required is dictatsd by the nurber of
unknown coefficients reteined in equation (3). The location of
these points sponwise’'is epperently erbitrary; howavser, since
Matterperl plaoced them on tha gight wing half at 1 = 0.17k, 0.500,
0.766, 0.940 (¥ = 80°, 60°, , 20°), this arrengement has been
followpd in all appl*cations prusented.herein.

Determin~tion of Downwash

The expression for downwesh ot a control polnt, zs dstermined
through ths Blot—Savert relation, is
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((_)® AR _ Ar, N
;\;zlr% = (en+l)azn+y 1'2%‘}:3)_— <BR JERRTBER By, /’IEE,'EEE/

n=0

+ 7 sin (2n+l)v + 8 [‘“/Lcos (En-t—l)qa cos @i
s' cosA sin ¥ BRo

nf s
- \]‘3% + ta.nA)f . 298 (2n+l)qx1cg + J}'\l + —E——A y’ 'ba.nA)

nfgcos (2n+l)cp‘ cos @ ~Z
e - ()
st M&@M AL _ ten f“/z cos (2n+l)odo
* * (5 ‘90 G

F(C+F)
B2y, o

I (AL—Y ) tan A\ p/2 cos (2n+1)q;acp1
e )f cos @ + 11-;- e [ (21)

Equation (Bl) may be reduced to a simple expression, centain-—
ing only the unknowns &azp+y and their numerical coefficlents
simply by the infroduction of wing gecmetry and the gecmetry of a
control point. Such a reduction should therefore be carried out
at each of the points.

Solution for Additional Loading

Since for such a solution the wing is considered a flat plate,
all geometric angles of abback bhecome sin o and the constant
factors in equation (Bl) become cne. Simultansous solution of
these equations then evaluates the unknowns agnp+1, which are
subsequently introduced into equation (2) to produce the desived
expression for additional loading.. The unknowns can 2lso be intro-
duced into the following expressions derived from equation (2), to
obtain the values iIndicated.
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dCy, _ 2n2bCq _ hy2a,

do ) gy = 3% (B2)
el _ 2(14+)0) L _
T - maa[ (1) oos @] (a1 sin @ + 83 sin 3p+as sin Spter sin 70)
(B3)
cicq by .
CL Cavy a1 (e, sin @3 sin 3p+as sin SP+a, sin 7o) (k)
= ll’_ 3en __ 85 a7 >
Ticp = 3% <l + o on + Toar (B5)

Solution for Basic Loading

Ag in Falkner, the basic loading on & twisted and/or cambered
airfoil can best bs calculated by determining the total and addi-—
tional loading at some finite 1ift coefflcient and subtracting the
latter from the f£ormer. The procedures involved are parallel to
those of the Falkner method as well., An srbitrary angle of attack
cg can be selected for the root section of the wing, from which
all local angles of attack can be measured. Substitution of
8in ajocgl Ffor W/V and ein oy for sin ¢ 1in the expression (B1)
will result in & set of equations which maey be solved simulteneously
Ffor the values of the coefficients agn+;. If a3 and sin og are
are then introduced into the following, the corrsct value of the
1ift coefficient for the wing at the described attltude o will
result

Cp, = ixBa1 sino (B6)
14X

In addition, 1f the values of azp+r &and eln ag are substituted
into the following, an equation for the crdinates of the curve of
total loading on the wing at o results.

(a1 sin @iaa sin 3p+as sin S5p+ary sin TP) (B7)

- B0,
0101] - wasb
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If the values of coefficients obtained for a solution for the addi-—
tlonal loading are then substituted Into this expressicn, the addi-
tionel loading at this ccofficient will resuit. Subtrection of the
ordinates of this last from thcse of the total loading curve will
give those of the desired besic loading curve.

Correction for cig

As in the mothod of Felimer, the error introduced into the
solution by the assumption that 21l smectlon lift—curve slopes Cle
were 2r cen be readily eliminsted. If the actual Cly doce
not vary across the wing, the coefficients agzp+1 should be multi—~
plied by the ratio of actual Cly bto 2n. If the actual value does
vary along the span, this ratio Should be included in equation (3)
a8 a function of the spenwiss variable ¢.

Computing Instructions

These instructions apply only to tmyawed wings devolid of cember
and/or twist.

If the local angle of atbtack ein o 1s introducsd into

expression (Bl) in place of the downwash retio w/V, this expres—
gion can bs writton

Z (¢n+l)a2n+l(sl+F2+F,3F3 ', Fy ' HFsFg T4 P 147, By 14FgFg ') (B8)

n=0
where
- Fy = (=77 AB AL )
2n+l \BR ,/AZR-'-BER BL /A2TAB2T,
Fp = —% — sin (2gil (89)
g' cos A sin ¥
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Computing form B(1l) is used to calculate all factors which remain
constant throughout the summations for sny one comtrol polnt: Agy,

BRr, AL, Br, s', C, Fg, Fy4, Fx, Fg, F;, Fg. The compubation form

for those Tactors, which vary with n only throughout the surmations
for any one conitrol point, is presented in form B(2)}. Computing form
B(3) is used to apply Simpson's rule to the integration of Fat!, E.!,
Fgt, Fg'!, F;! and Fe!. The factor XKgpniz, vwhick is independent of.
wing shape and so can be applied to all wings, was calculated from the
relation

Kotz 7@3{ _cos(2n4l) dp (810)
0

cos ¢ — cos ¥

and is presented in the following table:

Controli i

point i Kzn+1

1 2.54928
8.26392
8.87752
6.10976 |
2.47976
k., 586k0

-1.909kk

4 .63656
2.33120 |
0.47920

-3.47696
3.39776
2.00112

~1,92340
1.38068

-0.53112 -

——— -

WPOHOWNRFOWPNDHOWMDEF O

The results of the Iintegration are presented in form 3(3).
Form B(4) is the form in which the components F are multiplied
together and the results are summed producing four equations,
one for each control point. Lastly, the form for the simulteneous
solution of these equations (reference 9) and the resulting values
of the unknowns are presenied in form B(5).
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Form B+— COMPUTING FORM FOR MUTTERPERL'S METHOD
(Underscorcd numbers are sample calculations )
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Com‘:ral Point— |

Ap= 122609 Bo=.19566 A= .37/0 By=- L2708 M= 290
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!
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{
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Form B~ CONTINUED

NATIONAL ADVISORY
COMMITTEE FOR AERORAUTICS
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APPENDIX C.— DEVELOPMENT AND COMPUTING PROCEDURES
FOR USE WITHE THE WEISSTIGER METHOD

In the Germsn reports avallable, whick dezcribed this method,
the mathematlcal development was not complete. It was thought
advisable therefore to include the development in thes present paper.

From lifting—line theory the squation of downwash at the one—
quarter chord Iine of a straight wing is given by

b -
vy = FPrim) L 47 (c1)
[z ¥¥

This integral equation is solved by m*:.hopp by en integratlon
formuls (reference 10}.

The equaticn of downwash at any point xy of a stralght wing
ls glven by .

Vyy = ..l.. b/2 [']_ + Am-] P'(y) aFy (02)

[z 7T}

Welssenger divides this integral into two integrals, one of which
is the seme a@s equation (Cl) which he solves by Multhopp's method;
and. the other whilch le solves by a method analagous %o that of
Multhopp.

The mathematlical development isas follows:

With G = T/Y, 1 = 2y/b, 7 = 2F/b, ar = b/ey

and setting X equal o the distance to the three—quarter chord lins
x = cqnf2, the equation (C2) becomes

L él'z? : -n%_% L1 +Jl +(ar)‘(n—n)2] G!'(M)an
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o
¥-5 [, ¢@a, g._/ I [ar(n)] GEpaT  (c3)
where
. + 22 ~1 :
Ip=0 [ax(n-7)] = e (ch)
or

-\/’l-i-s.rvz(cos @y — cos qu)Z -
ary(cos ¢y — cos @)

La=0 (v,u) = L{er(cos ¢y — cos qu)}] =

The first integral of equation (C3) can be writien as a function
of . : -

P14 d_'G_(il d *
te(@ g ap_ 7 (c5)
21t 1 TN 21’( co8 ¢ ~— co8 Qy

where
cos @, =cos;—’lﬂ—-=21=n

An integration formula gives

J/_‘ i £(7)aq = EEI %f(ﬁn) sin op (c6)
=

vhere Op = ﬁ%%’ £(fn) is the value of f£(7) at Tn.
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Equation (C6) holds exactly if £(§) can be represented by -

o3 2n
£(H) = J1-72 Z AVTY = E— ay sin vo
V=1
or, in addition,
= ...2_ T i c
£(p) =) £(7,) sin LiPn sin H1® . (¢7)
n=1 Ha=l C
Letting G(o) = (o)
then
- m - nm
a(p) = E%I 2% Zsin R1G, sin pa@
n=l =1

m m
a@¢ | 2. Z Gp Z i5} sin p.;_cpnx cos {19

and the integral in equation (C5) becames .

— i an 5 py SIRi20n 008 Pa®_ 4o

m+l cog @ — cos Py
D."l [.I.l...
Now
cos nP - w ain nPo.
/om cos @ — co8 @y A9 = =7 %o | {c8)
or
m
i cos @ )d. = 1t pa sin pi®y sin
[ Z (b2 sin pagn) (— ra——— A . cp——h‘-ﬂ-uv

pi=l pi=l
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so that equgtion (C5) becames

OEL Jmomimyece
gin Py

M=l
o L B gin pi0p sin WLigy
m+l Gn }; . 8in Oy (c9)
n=1 ua=l

The 43 séries is independent of wing geometry and may be put into
a coefficient usable for sll wings.

From equation (C9), for p=v, let

m
BV, v= (m+1) iin.¢v E: Hasin® tapy (or0)
M=l
end for n # V, let
'bv’n = (m+l)—Js-in ey Z pisin La®n sin iy (Cll)
Bi=1
Then equation (C5) becomes
I 1
by,vGy  — Z byn Gn (c12)

n=1

(Note: The summation prime indicates that the term of n = v
should not be included.)

Expression (Cl2) gives the induced angle of attack on the one—
guater—chord line, at the span station v, in terms of the summation
of n spanwige values of the dimensionless circulation.
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L

Equations (C1Q) and (Cll) mey be simp]i:ied with the aid of

the summation formula

: N\

Z Hi CO8 H1X = rezl parst of(z pyetti®
N
Ha=1 =1
- ncoa(milx -- (mildlcos mx + 1
2(cos zx1)
or
b = ditl
VsV T ¥ sin ov
by g = sin on [ 1—(=2)=V ]
] (cos @y — cos gy)2 2(m+1)

The second intsgral of the intogrel squation (G3) o

i/_‘l’“ TA(V,u)G (F)dT,

is solved .in an snalogous fashiom.

The integration formuls gives

\/c:f(o)d(p hzl{:f(‘:l’o);f(ﬂiﬂ) i f(%):l
b=

where

(c13)

(c1k)

(c15)

(c16)
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Dimensionless circulation is given by

1 m
G(p) = - L Gp V sin w10, sin pa@
m+1l ya
n=l =1
or
Tm“ 1
Gt (p) = nf-llt Z_-Gn i Hisin K1 ©y cO8 K10
n=1 U.J_=l
Lletting
- - N
(o) meT ), HiSin Ba®n c08 g (ci7)
Ri=l
then

G' () = i Gn fn(o)

n=1
Expression (Cl5) may be modiried so that

RIAE tmyaw = = L [T Gt
2x ] . Lalv,n) G (F)aq ™ LA(_V, UG (@)ag

-5 - eﬂfﬂ [LA(V,H)Gn fn(‘:P):l ap
(o]

n=1

Then applying equation (Cl16), '2=LTT A
\®

: Ialv,u) G1(7)aq
=1

T M
fi L
R 4 1 ALalv,0) 1En o) [TA(v,M+1) J(£1 M) + ) T £ }
2n Lo Mel g 2 JEVs)Enu

- 2(M+1) U o

p.:
=i o —1 f [La(v,0) Hfp. o) +ITA(v,M+1) (£ M1 ) + {jLA(v,u)fn " }
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For simplicity let fn,u fn(tpp) where fn(q’u) is from
equation (C17) for ¢ = ‘PLL = W /M+1

" ThHen 1if

vn = 2(M+l)

{[LA(V ,0)1(fn, o)+[I¥\.(V 1) (€ e ) .+i LA(V,u)En u}

expression (Cl5) becames

(c18)
m
. Z Cnéy,n | (c19)
n=1 )

The solution of equation (C3) is two times equation (C12) plus
ary times equation (C13) or - L

li.

<

(bvav ZWn%) Y&I‘vgvnc—a
- n=1 n—-l

Wt m e

2by,y Gy *avy &,y G ¥ i 8y,n On — 2 Ebv,nGn

n=l = . n——{lT
g0 that '
. _ mlt
%E-—» (2by,v + ary gv,v) Gy — z (2by ,p—~ a¥y &v,n) Cn
! _.n=l'_-.'
or
1
¥ =¥ Gy ~ ?ﬁ b¥*y n Gn (¢20)

_n:l



50 NACA RM No. ATC31

where

b¥y = 2by y + ary gy, v
2 2
{ca1)
b¥y,n = Zbyn— 8y gy,n

The prime on the summetion indlicates that the term of n = v
should not be added into it. '

Equating the downwash o the local angle of attack of the plate,

m

ay = b¥y Gy "Z b*y,n Gn (c22)
n=

For a swept wing the squation of downwash at any chordwise
point for ¥ _>_0 is given by

_ 1 b/ F'(I) x — |¥] tan A _
Ty = bt fb/2 y-F '- T S (x = |F] tan AP+ (y-5)° de

dy

1 [ s X — ¥ tan A
T ix _/:b[z r(y) [(x = |F] tan AP+ (y-F)2]13/2

b/2
1 X — vy tan A =
- T a. ce
+ hn£ (Y) [<x lyl : ,.)2+ (y ?)2]3/2 5 ( 3)

The first integral 1ls the downwash due to the trailing vortex
sheet and the last two Integrals reprosent the veloclty induced
by the 1lifting line. By Integrating the last two integrals by
parts and rearranging into dimensionless quantities, the preceding
intograls may be put in a form similar to equation (C3).

1 - 1
.2 T a= = arf= & w
*= Er‘,_[l - AT+ 85 ) I 61 (R) 2 (cak)

(Wote that in tho following equation (C25) the squares under the sccond
radical of L,(n,7) for { <0 are sumod. In reforsnce 3 thesc
Woro erroneou&y gshown as a difference.)



where for M<O0

Lp(n,7) = 1 .w!1+ ar tan A (n-|f|)]2e(ar) 2(p-N)2 _ l} 4 2 tan A[1in(ay) tap A1? &+ (nr)2n2 !

ar(n=7) | 1 + 2n (ar) tan A 1+ 2y (ar) ten A

and for M >0

1 (n,7) = A1+ ae ton A (n=lg) % (a) *(n=) = -1
ar (n-1)

Equation (C24) with Ia(n,7) as given by equation (C25) is for y>O0 and will give
values Ffor only the positive span stations. For values with y<O, expressions similar to
oquations (023) and (C25) must be derived. Values of Ip(n,T) ‘are needed for y<O if an
unsymetrical wing s to analyzod. -

Equation (C25) with 1 = cos ¢, and T = cos @u, and ar ot spon station v as ary
for cos @y >0 becomes, for cos gy <0,

+(c25)

TEOLY *oN W VOVH

- — P P — b7
Lp(Vsh) = 1 fi[lﬁrv tan A (cos @y — |cos Qu|) 1%+ (ary)®(cos @v —~ cos @)

ary (cos gy — cos gu) | 12 ary cos Qy tan A

.2 tans/ [L+ar, ton A cos @u12 + (ary)® cos® oy
142 (ary) cos @y tan A

and for cos qu. >0

TA(V,B) = A [14ary tan (coé oy — !cos {‘&])]2 + (ary)2(c08 @y — OB %)2 -1
ary (coo @y - c08 Qu)

)

)

&(026)

TG
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Equatlions for determining Gy at spanwise polnts of

2,52 = cos Z_ for any wing may therefore be determined from

m+l
equation (C20).

Summarizing the computations, the relation equating downwash

to the local slope of the plate at m points along the span giving
m equations with m unknowns, G.q is

1
ay = by Gv—ib*v’n GpV =132, ...n

n=1l
where

oy = angle of attack at span station V

b/2 T ml

b¥y = 2by,y + ary agy,v

i€ -

b = ol
VoV " 4 gin o,

. - gin Qn i _]_...(_ﬂl)n""’
Vol " (cos pp—cos ov)°] 2(m+l)

gv,v = gv,n for n=v
M

_ . LA(V,0) (Fn.0) + Lalv,M+1)
YY) [ 2 ' ¥ E: Za(Vsu) Fo,p ]

=X

b - wing spayp
cy chord at span station v

5

Lpa(v,n), for a straight wing, see equation (Ck).

La(v,u), for a swept wing, see equation (C26).
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fn,u=j£%_ ful 8in My Qn CO8 Uy Qu
pi=1 '

where again

% = 28

w =3

% = T

The computations required in the preceding group of equations
may be simplified if such values as by,y by,n for various nle,
and fp,u for various m's end }'s are tabulated. Then a solution
for any wing conslsts of a substitution of wing geometry into the
Lp(v,n) function, equation (CL) or equetion (C26), and a combinetion
o the tabuleted coefficlents to obtain m simultaneous eguations
with m unknowns Gp.

The computations for a symmetirically loaded wing may be still,
further reduced by an alterstlion to the preceding eguaiticns and
cosfficients., For a symmetrical wing with or without camber end
twist, the distribution of local angle of sttack is symmetricel
agbout the center of the wing or

ﬂ’_:‘.e.h_lzx = ay
then
Gy = g1V
Gy = Gp+a1—v
and
V goes from 1 to Egi

n goes fram 1 tom

it gees from 1 to M
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The summation terms can be writien such that n from 1l tom
becomes n + m+l-n fram 1 to B=, and @ from 1 to M beccmes

B o+ M+l-p from 1 to M’—él (For the cases n = 1—'%‘—3'- end B = I—“—;-]--

the coefficients are expressed as thelr former velues as will be
seen dirsctly.)

Now if eguation (C20) is expressed as

wl
t
ay = (b¥y ;u + b¥y Myap) Gy— Z (% ,n + P*y,my1n) Cn
n=1
vhere
n # Bkl
2
M+l
wF
v = 1,0, Btk
2
Then
nid
g
o, = B¥y Gy — B* q Gp (c28)
n=1
where
M+l
BYy = b¥y y + b pMpp Vo= 1,2, . .111;2%, H 74—5—
{c29)
BYwm =b%n +bpua g V=12,2... m%i’ o ¢ mz—l
Thease coefficlents may also be expressed as
B¥ = Zby,y + 81y Gy,v )
. (c30)

B¥wn = 2Bvn — &y &yn



-+
where B, . 1s limited in that B, , = b bymisn for nf L B, o =by  forn= T

Va1 +

To find By,n conslder the expression for gy,n

B.n = = S [2a(v2)1 (£, 0) ”EILA("’M””](fn-Mﬂ’ + Z T(v, ML) £

p=l

The sumetion term of @y, can be wrliten for n # m'é"l
Ml

2
§L Lp(v,u)fn,p = ? [LA(V;u)fn,u*fLA(V’M+1-P)fn,M+1—u+LA(V:l*)fm+1_n,p+LA(V:M+l-#)fm+1..n,M+1.p]
L Lo

p=l p=1

"{ Inlv M:’!;L) fn,Mgl_.'- LA(VME;L) fm+:|.—n,M2L:L ]

for n = Bkl
ML
i IA(v,n) fn,u = SI[IA(V:u)fn,p, + LAV ,M+l4) fn,M+:|.—|J.]+ [IA(V :Mgl) fn,M%J_-.] (€31)
T |.L=i

TEOLY “ON MM VOVN

44
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where as before

n
™
fau = E%I' ) Bi sin ui B cos uy BT (¢32)
-
pa=1
exanination of equation (C32) will indicate that for n = Bl
/ M+l
[LA\\), i1 ) £ ML | = 0
for n § Bkl
2
/M ’ A _
LA&th%l Tp,Mr  + LA(V:ME%) fm+1—n,M§£
2
= = I;m+an,u

have values only for evem i1, but for even Ui, fn,u

so that these texrms equal zero.
m+l

Then equation (C31) becomes, for n # ~x—,
M-l
! 2
o .
L)-J LA(V,!J,) fn_,lJ- = 2. [(fn’u + fm-{-l—-n,u) L_A(V,U.)
M=l =1l

+ (fn,Mi1-p + Pmez—n,M+a—) Ip (v ,M+1l-u) ]

ané for n = m%l,

M1
M S _ o _
y (fmu) AV n) + (Fnmei) TA(V,Me1-u)] (033)
=1

211 LA(V:U) fn,u =
o= m

Further examinstion of equation (C32) will show that for only the

odd M3

fn,u = = fn,m+1-n



However, the second sumation in equation (C33) has n = 1%“1" in which instance the sven Wi
torms in equation (C32) vanish, thus the second summation becomos

5 .
2 fmﬂ,u [Tp(v,n) ~ TA (v, M+1~1)] E
e N | g
Tho first swmation in ogquation (C33) has torme of £, = — iy and £ Migep = =~ fpea 1y B
for even By oOr the coefficients of Ip(v,n) ond Iy(v,M+l-n) vanish or oven ’ul._u mra-m, M —ua’
In addition fyp+fmer-n,u = — Fn,Meaptfmen Mo for 0dd py  or tho sumation is e
M-l
2
z (fn,phmei-n,u)  [Sa(VsR) ~ Ip(v,Med-p) ]
n=1
where fy y+fjiiy,y 18 obtalned from (C32) for the odd terms of ni.
Lastly,
(fn,o)LA(V,o)+(fn,M+1)LA(V;M+l)= (fn,o+fm-|-1—n,o)LA(V:C)-l(fn,M+1+fm+l—n,M+1)LA( v,M+1) for n £ mHL
2 2 2
- (£4,0"n+1-0,0) [LA(Y,0)-La(V,M+1) ] for n = m__;g___
5 _
where fn,o"‘fm+l—n,o is taken for only odd pi. And, for evem My fp,o0 = fme1n,0. So that
& factor Fp . may be expressod as
+ .
o = £, for n = le and 0dd pj v

Tn,u = fnutfmirn,p for n # m.pl:l and 0dd 3



= 4T, .
Fou = fr.otfmsr-n0 po. g 4 E%&’ =0 and odd pj

fru = fIl-at-‘-’- for n = m;l, u=0 and 0dd pg

end. M=l
2
&v,n = E('ﬁi‘i")’ Tn,u [LA(v,g) — IA(V,M+14)] (c3k)
1=0

Exemining squation (C32)

bl ~gin py -Ri

n,H m+l

l-n)n nx nx nw
f sin ua -(m—.l-——L = ain M - EL-—-) = gi T cos panx a8l Rani co T
m+1-n,0 ¥ B2 el 251 -~y n Bi T+l n ol S B

or wvhen 3 1is odd,

. nit
fm+i-n,p ~ 8in %:I
Thus
fn:“‘ = %1;+1—n,u
Thon, as beflore M=

8v,n = _:J' i fn,u [La(v,u) — LA(V,M+1-p)]

TEDLY "oN Wd VOVN
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whers finally

f"n,p, = fp,u for n = m—gl'- and odd pi )

-f-n,p. = Efn,u for n 74 m;_l and odd p3y \

- (c35)
Fou = fnu forn g B 4 =0, and 0dd uy

= hig

Po,u =<3 forn = m;l’ )

and

m
fa,u = A= 2 By sin gy xlff-f cos py B

m+l M+l
pi=1

A further simplification to gy,n cen also be effected. From
the binomial theorem:

e R e L L T
R IDRLTORENC TR
for &>b (C36}
and.

/a2 + b2 =‘b+%%§-—%%§+%€%§..
- .1/ 1N_1/1)\°, _;_ ]
a[a"'Q(ﬁE) BGJ/a) 16\‘373) e
for a<hb " (e37)

Now letting

() = Q___.&._Egﬁ
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= B
then for % a

T(t)=1+{;t2—§t4 +i%t6 ‘i%g._te for t <1

or

T(t)

8 \t 16 % .

Eguation (C34) may be written

where

ATA(v,u) = Ialv,u) — Ta(v,M+l-u)

This can a8lso be written

ALA(v,u) = Ip(n,T) ~ Ipal(n,~7)

8o that from equation (225)

ATA(v,u) = Jtlﬂrv(n—zv?iﬁn!\] +[arv('1~n)32

1 o [Ltery (1) tan A 1%+ [ar, (1+7)]3

- 1+2aryn tan A axry, (n+7%)

2 tan A

T T+2aryn tan & o [1taryn tan Ao+ [ezyn ]2

———

o
ery(n2—T12)

t+l<L> _1/1Y L1 (L\)s 5 (1) for +>1

(c38)

(c39)

{cko)

(cki)

(ck2)
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Then
ATA(V,u) = T(ty)— ml’ﬂtz) + T(tg) tan A]

— T(tg) tan A- 51% <§§%’: (ck3)

vwhere

ty =

——'—l'—-:"_-— -+ t.anAI
ary (n-7) _
1 - 30 ta
ary (o) | T AI

tg = ary 1 N
l+ary 1 tan A

t2

and T(ty) tekes the sign of (n-7)
T(ts) tekes the sign of tg

Several of the Punctions of equaticn (Chk3) are independent of wing
paremeters and may be tabulated for varicus mn and 7.

1
et By omgp RoRe Xetgys B
K, = 5%, K, =032

namz’ S a4
where, as before,

= M. = BE_
n=cos 2= ) cos T
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Then

ALpA(v,p) = T(t1) — [ T(t2) + T(ta) tan A]

—
1+2 tan A
By Kg

— T(tg) tan A~ By K, (ckh)
where |

ta By K1 + tan A

t2

By K2 + K5 tan Al

1

ot
[A]
]

and
T(ty) takes the sign of X;
T(tg) tekes the sign of t4

In sumary, for the symmetricelly loaded wing,
mtl

ay

2
B¥y Gy — y B*y n Gn, V= 1,2 ... m—‘-e*-l

m=1

B¥y

va’v + ary -g_V’v
" B _ -
B¥y,;n = ZBy,n — ATy Ey,n

{bv,n + by,m+r-n for n # mgl

B‘\),n = bv,n for n = %—J—"
N . X R
bv,v L sin @y
. ~ sin ¢p [1=(=1)"" "
Vo2 7| (cos @ —cos @)% || 2m+l __‘
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8y.n 18 taken from equation (C39); LLA(V,n) 1s taken from

(Cﬁh) and I, is from equation (C35).

Limitation of the Seriles

The number of coefficients Gp required for accuracy depends
upon how repidly the series equation (3) converges. Weissinger
used m equal to 7, 15, and 31 in his investigaition and ccncluded
thet the resulits obtained with m ecual to T were nearly as
accurate as those with m equal to 15 or 31. For this reason m
equal to T, or fow coefficients have been used in all of the applica—
tions of this method presented herein  The number of terms required
in the interpolation fumction £, ,; must also be established. Again
Weissinger used M equal to 7, 15, and 31 and found that results
with M equal to 7 proved as satlsfactory as those with M equal
to 15 or 31. ILastly, it should be noted that equation (3) cannot
satisfactorily approximate a curve containing discomtinuities;
however, a modification which will enable it to 4o so has been
developed by Muithopp (referemce 10}.

Solution for Additional Loadipg

Since in a solution for additional loading the wing is
considered a flat plate and all angles of attack ay are equal to «,
equation (C28) may be modified to

mil
1 = B¥y, %’- - i B*v,n ggl (cks5)

n=1 .
Evaluation of this squation at the seversl stations y produces &
set of equations containing the unknown circulations Gn which can

then be solved simultansously to obtain the values of these
circulations.

Substitution of the values so cbtained into the following
expressions, resulis in the values indiceted:

C AR G
TR ) Delng (Ch6)
1
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or for a symmetric wing,

m=l
Gz ~
4Cr, . mAR( 2~ Gn
k=I5 —F-+2 ) Meingq, (ch1)
n=1
G 1
c1 v
L= i
o, ™ T o /aa (ck8)
€10y _ ppp Gv 1 | (cho)
CiCev a dCr/da
and from reference 1l for m = 7
= - 0.3524G; +'0.503Gp + 0.344Gs + 0.0405Ga (c50)

°® " (.3827G; + 0.7071Gs + 0.9239Gs + 0.500G4

Solution for Basic Loading

The basic loading on a wing with camber and/or twist can be
determined in a manner exactly parallel to those of Falkner and
Mutterperl. An arbltrary angle og 1s selected for the root section
and the values ajgcgl, nmeasursd from 1t. If these values are then
substituted in equetion (C28), and if the resulting equations are
solved simultanecusly, velues of Gp will be obtalned, which when

ingserted intoc the following expression will give the corroct Lift
coefficient for the wing at this attituds.

=L
o = E"% <‘%‘i¥ +EZ Gn sin cp-l) (c51)
n=1

If these valuos of Gp are also substltuted Into the following
equation, an expression for the total loading curve will result.

c1 cﬁ = 2b Gy (¢52)
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Of the values of Gpn obtained from calculations for the addi-
tional loading are then substituted into cpuation {C52), ordinates
of the additionel loading curvo will be obtoined, which when
subtracted from those of the total loading curve will give those
of the desired baslc losding curve..

Correction of Clg

Ag In the othor methods, the error introduced by the seswmption
that the section lift—curve slope is in =11 instences 2rx can be
reoadily corroctod. The correction is accomplished by modifying the

sctual ¢z

epecific circulabtion ordinstes Gn by the ratio -—2-—-—9 whore
T

specific values of this function at span station n must be
dotermined if this funciion varies along tho span.

Computing Instructions

Tho ALx(V,u) functions are determinod cn form C(1) for a
swept wing and form C(2) for e straight wing (fAo.ssc = 0). Im
both cases the coefficlents Xi, Kz, Kg, Xi, and Ks sarc obtailned
from teblo CI. In the values of T(%t1), T(tz), T{tas) arc obtaincd
by ontering chart CI with the values of t1, tp, ts from columms
(10), (11}, and (12) fomm C(1). Form C(3) contains those compute—
tions which result in the Eéi oxprossions contoining tho Hil
unknowns Gp. The volues @y,p in column 9 of form C(3) ere obtainod
as follows: Consider the valuos in column 4 of this form a8 four
groups of four mombers with the groups ldentifiocd as

A wvhon n=1

when n = 2

when n =3

g a W

when n =4

Similarly, the valucs in colwm 5 of thils form can be considered
grouped as ‘
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1 wvhen v =1
2 when v =2
3 when v =3
L when Vv =1
then

By, =ZAX1
8,2=2Bx1
8,5=EC%1
g, =D x1
8a,0 = T A X2
gy, = LB X2, eto.

The computing form for the simultaneous solution (refersnce 9)
of +the equation (C45) 1s given in form C(4). The equations are set
up as follows: The firet equation consists of the first four mumbers
in columm 15 form C{3), the second eguation the sescond four, ond sO
forth; the first number in each group being the coofficleont of Gl/a,-
the second being the coefficient of Gg/m and so forth. Simultancous
solution glves the G/al's with the corresponding span station.
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N = 452 Zon/\. = —Looz
AN = .376 [— A = 624
R = 292 K = BN = 2057
(T2 13 14l5]e|718Taio]1Tiz[1ZT14]i5]18]17 1811920
/-1 A f’: I O I PP P
. K%l (. X +i o7 = &
VA p_?:’%l O [ @) @)’ﬁmw (fc}‘?)]ﬁlm.?t) Te) —m?m”%é, vl | ¢a 15
: =Gl
/ 59 di%ﬂ_ 1070|2229 [ Rz | OF77 57126 | 1067 Vipzsptinsa | dqyy | 4605 |igoas) reglp grns-amsl 2330
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Form C:~ COMPUTING FORM FOrR WEISSINGER'S METHOD

(Underscored numbers are sample calculations.)
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TABLE CI.— CONSTANT FACTOR REQUIRED FOR THE
CALCUTATION OF Alp(v,u) FORm =M =7

v i K1 K> Ks K Es
/oM L/ | 1/n | oW/n2R2 . 4/
1 {o| -13.1406 | 0.5198] 1.082k | —13.6610 | —0,0396
1 © Shiel 1.0824 ) 0
2 k6125 ,.6131] 1.082h 3.9992 .1329
3 1.8877 | 76531 1.082k% 1.0823 ko
2 tol —3.bakr| ,5858] 1.hihe | -4.0000| —-.1716
1| ~&.6125} .6131| 1.hike | -5.2254}1 -,1329
2 © L7071 | 1.h4142 o o
13 3.0826 | .9176 1.hike 2,1650 L2977
3 {0} -1.6200i .7232| 2.6130 | -2.3%32| —.hhok
1{ -1.8477, .7653| 2.6130| —2.6128 - J1he
21 -3,0826| .9176! 2.6130 | ~4.0002| —.2977
3 © 1.3065| 2.6130 o o]
L o} -1,0000 |1.0000 o ~2,0000 | -1,0000
1} —1.082% |1.082% o ~2,16k9 | —1.0000
2| ~1.h1k2 |1.h1k2 © —2,8284 | -1..0000
3| —2.6130 | 2.6130 o —5,2260 | -1.,0000
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TABLE CII.— INTERPOLATION FUNCTION
fn,n AS CALCULATED WITEm =M = 7

(Bl P
110t 2.613
1i-1.k1h
2 {~-1.531
3 Jh
21 0}-l.h1h
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TABLE CIII.— VALUES OF By,p TABLE CIV.— VALUES OF by,
AS CAICULATED WITH m = 7 AS CAICULATED WITH m = 7
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